
Projet Long : Sûreté de l’IA

Baptiste COMBELLES
Clément CONTET

Guillaume COULAUD
Joceran GOUNEAU
Thibault MOUSSET

Encadré par :
Guillaume DUPONT, Aurélie HURAULT & Philippe QUÉINNEC

Département Sciences du Numérique - Troisième année
2022-2023

1

Contents
1 Introduction 4

1.1 Model studied . 4
1.1.1 Neural networks . 4
1.1.2 Decision trees . 5

2 Bibliography 6
2.1 Formal verification . 6

2.1.1 Goals . 6
2.1.2 Methods . 6

2.1.2.1 SMT-based methods . 6
2.1.2.2 MILP-based methods . 7
2.1.2.3 Abstract Interpretation-based methods 7
2.1.2.4 Other approaches . 8

2.1.3 State of the art . 8
2.2 Adversarial attacks . 8

2.2.1 Neural Networks . 8
2.2.1.1 White-box attacks . 9
2.2.1.2 Black-box attacks . 11
2.2.1.3 Poisoning attacks . 12
2.2.1.4 Grey-box attacks . 12

2.2.2 Decision Trees . 12
2.3 Building Safer Models . 13

2.3.1 Countermeasures Against Adversarial Examples 13
2.3.1.1 Gradient Masking/Obfuscation 13
2.3.1.2 Adversarial Training . 14

2.3.2 Confidence Learning . 16
2.3.3 Data preparation . 17
2.3.4 Ensemble learning . 17
2.3.5 Building easier to verify NNs . 17

2.4 Explainability . 18
2.4.1 Minimal explication - formal explainability 18
2.4.2 Verified perturbation analysis - non-formal explainability 19
2.4.3 Explainable Neural Networks . 20

3 Plan for phase 2 22
3.1 Experiments . 22
3.2 Tools . 23

3.2.1 Verification . 24
3.2.2 Attacks and defenses . 24
3.2.3 Training easier to verify NNs . 24

2

4 Experiments 24
4.1 The framework . 24

4.1.1 The datasets . 24
4.1.2 The model . 25
4.1.3 Training a model . 26
4.1.4 The attacks . 26

4.2 Impact of the adversarial example for the training 27
4.3 Evaluating the model’s accuracy . 29
4.4 Confidence Learning . 31
4.5 Verification . 33

4.5.1 Neural networks . 33
4.5.2 Weight sparsity and ReLU stability 33
4.5.3 Decision trees . 35
4.5.4 Other tools . 36

4.6 Explainability . 36
4.6.1 SHAP and LIME . 36
4.6.2 Anchor . 36

5 Conclusion 37

Appendices 37

Appendix A Reproduce the experiments 37

Appendix B Run the project 37

Appendix C Tool list 38

Appendix D Weight sparsity and ReLU stability 39

3

This report is accompanied by a GitHub repository: https://github.com/BaptisteCbl/
surete-IA.

1 Introduction
Neural networks (NN) and especially Deep Neural Networks (DNN) have proven to be
extremely powerful tools for machine learning tasks — such as recognition problems applied
to images, text or speech. This work is focused on image classification for which NN has
shown the ability to reach human-level accuracy. Nowadays, these models are commonly
used for machine vision task such as recognizing road signs [1] which is crucial for self-
driving cars. Thus, some guarantees are needed when using the prediction of a model in
practical applications: will the model always recognize the “STOP” sign? can can it always
have human-level accuracy or are there situations where its performance are worse?

Some works [2, 3] have shown that DNN have poor performance with specially created
examples which are called adversarial examples. They can be defined as inputs specifically
created by an attacker to deceive a classifier. In the case of image classification, the inputs
are image which are modified to look like the original but for which the classification will
not lead to the right result. However, a human should still be able to find the correct
image’s class.

There are defense mechanisms to counter such examples [4]. There are two main cat-
egories (1) Gradient Masking: as some attacks exploit the gradient information of the
classifiers, masking or obfuscating the gradients aims to to make the attack less effective.
(2) Robust Optimization : the goal is to train a robust classifier that can correctly classify
the adversarial examples.

1.1 Model studied

1.1.1 Neural networks

We limit ourselves to deep feedforward networks [5] — or multilayer perceptrons. The goal
of a feedforward network is to approximate a function f̂ . In the case of image classification
y “ f̂pxq with f̂ the classifier, x an image and y the class or label of the image. A
feedforward network aims to define a function y “ fpx, θq and to learn the parameters θ in
order to provide the best result according to a specific criterion. The learning is made using

backward propagation
Bfpx, θq

Bθ
and a gradient descent-like algorithm. The two feedforward

network architecture studied are

• Fully-Connected Neural Networks
Fully-Connected neural networks (FCN) consists in a sequence of fully connected
layers that connect every neuron in one layer to every neuron in the next layer. An

4

https://github.com/BaptisteCbl/surete-IA
https://github.com/BaptisteCbl/surete-IA

m-layer fully connected neural network can be formed as:
#

z0 “ x

zℓ`1
“ σ

`

W ℓzℓ ` bℓ
˘

.

The layer ℓ ` 1 consist of applying the activation function σ to the product of the
weight matrix W ℓ and the previous layer zℓ plus a bias bℓ

• Convolutional Neural Networks (CNN)
Convolutional neural networks are used to process grid-like topology using convolu-
tion operation. They are therefore particularly suitable for images. The convolutional
network can be seen as a simple feedforward network using a convolution in place of
the matrix multiplication W ℓ

¨ zℓ. The goal of a CNN is to extract the features of
the object in the image in order to learn its representation.

input
layer

hidden layer

output
layer

(a) A fully connected neural network

convolutional
layers

fully-connected
hidden layers

input
layer

output
layer

(b) A convolutional neural network

Figure 1: Representation of the two models from https://tikz.net/neural_networks/

1.1.2 Decision trees

Decision trees are nodes organized in a tree structure in order to perform classification or
regression. In addition to simple decision trees, two major models exist in the scientific
literature about formal methods :

• decision tree ensembles (mostly random forest) which are sets of decision trees more
or less independently trained where the final output is a combination of the outputs
of each individual tree, often some kind of vote system;

• gradient boosted trees: dynamically built ensemble where models are trained sequen-
tially in order to slightly improve on past models’ performances.

5

2 Bibliography

2.1 Formal verification

2.1.1 Goals

Among the multiple properties that can be verified on machine learning models[6], the
one that interests us the most here is the robustness of input perturbation. This property
focuses on the study of the impact on outputs of perturbations of the inputs (goal G4).
Typically, such a property ensures that all points within a ball with a certain radius around
a given input are classified in the same way as the original input. In the case of NNs, it
is also possible to pursue a similar but slightly different goal ensuring that none of the
outputs are hazardous, i.e. that a certain property on the outputs holds independently of
the inputs (goal G5).

2.1.2 Methods

Similarly to what Urban and Miné did in their survey [7], we distinguish between two main
classes of methods used in formal verification: complete methods and incomplete methods.
If both classes of methods are sound, incomplete methods will not always be able to
conclude whether or not a given property holds. This is due to the fact that incomplete
methods do not solve the verification task directly, they rather solve a relaxation of the
problem. This makes incomplete methods prone to false positives meaning that a warning
will be triggered because the method can not verify some inputs due to overapproximation
while in fact, those inputs are well-behaved. Nevertheless, incomplete methods are not to be
discarded, indeed, their complete counterpart usually suffer from being much less scalable
and having a restricted scope in terms of the specific choices of the verified model (type
of architecture or activation function for NN for instance) while the use of approximations
makes incomplete methods more universal. It is also worth noting that it is possible to
make incomplete methods asymptotically complete by iteratively refining the underlying
over-approximating analysis when it is inconclusive.

Verification of robustness for decision trees is quite similar to verification for neural
networks as the purpose of it is often finding the nearest adversarial input by using similar
formal tools.

In the following sections, we will present multiple complete formal approaches: sat-
isfiability modulo theories based approaches (SMT) (Section 2.1.2.1), mixed integer lin-
ear programming-based approaches (MILP) (Section 2.1.2.2), and another approach (Sec-
tion 2.1.2.4). Additionally, we will describe one incomplete method, static analysis by
abstract interpretation (Section 2.1.2.3).

2.1.2.1 SMT-based methods

In order to be able to apply SMT approaches, the model is first encoded as first-order
logic formulae and its negation of the desired property is added to it. If the problem is

6

satisfactory then we have a counterexample and the property is not verified. Otherwise,
the problem is unsatisfiable, there exist no inputs making the formulae valid and hence,
there is no counter-example and the property is verified. In the case of a feed-forward
neural network, the problem can be encoded in the following way [8]:

ẑℓ`1
“ W ℓ`1zℓ ` bℓ`1

@ℓ P rr0, n ´ 1ss (1a)
zℓ “ maxt0, ẑℓu @ℓ P rr0, n ´ 1ss (1b)
l ď z0 ď u (1c)
zn ď 0 (1d)

where Equation (1a) represents the affine transformations between two consecutive layers,
Equation (1b) encodes the Relu activation functions, Equation (1c) describes the con-
straints on the inputs, and Equation (1d) is the negation of the property zn ą 0 on the
output which is under scrutiny.
It is important to note that in the case of NNs, the non-linearity of the activation func-
tions, a key element in their performance, is a serious drawback since it makes the problem
NP-complete.

2.1.2.2 MILP-based methods

In this context, mixed integer linear programming (MILP) is used in a similar way to search
for a potential counterexample to the verified property. To this end, objective functions
often take the form of a minimum or a maximum. In MILP encoding, the difficulty due to
the non-linearity of the activation functions also comes to light since the system can only
manage linear equations. To get around the problem, binary variables are introduced to
account for the activation status. In the same context as in the previous section, a possible
MILP encoding presented by Tjeng et al. [9] is:

ẑℓ`1
“ W ℓ`1zℓ ` bℓ`1

@ℓ P rr0, n ´ 1ss (2a)

δℓ P t0, 1u
|zℓ|, 0 ď zℓ ď uℓ

¨ δℓ, ẑℓ ď zℓ ď ẑℓ ´ lℓ ¨ p1 ´ δℓq @i P rr0, n ´ 1ss (2b)
l ď z0 ď u (2c)
min zn (2d)

where equations (2a) and (2c) play the same role as their respective counterparts (1a) and
(1c), equation (2b) is the translation of equation (1b) in linear terms using binary variables
and (2d) is the objective function, in this case, if the minimum obtained is negative, the
property xn

ą 0 will not be verified.

2.1.2.3 Abstract Interpretation-based methods

Abstract Interpretation is a classical approach used in static analysis to derive important
properties. In our case, the method is used to prove the local robustness of a neural network.
An abstract domain is chosen to abstract the computation of the model. Multiple domains

7

exist (intervals, zonotopes, . . .) supporting different activation functions. However, having
complex domains can make the verification harder. Urban et al. give a more detailed
presentation of the method in the context of machine learning [7]. Abstract Interpretation
has also been used to detect bias [10]. It uses forward analysis on simple domains to
group the input space regarding activation functions and then perform backward analysis
to discriminate biased partitions.

2.1.2.4 Other approaches

A method was proposed in 2019 by Hongge Chen et al. [11] to exactly verify the robustness
of decision trees (ensemble trees) by computing the minimal adversarial distortion. The
algorithm developed allows to find it in a linear time for a single tree. For ensemble trees,
the problem is changed to a max-clique enumeration with a multi-level algorithm for large
models.

2.1.3 State of the art

Formal verification of machine learning models is a very fast-evolving field. The size of
models that can be verified while lacking behind the size of the models currently developed
is still growing fast. This makes it hard to keep track of what the state of the art looks
like. Nevertheless, urban et al. give a good overview of what was actually achievable two
years ago [7].

Additionally, a competition of verification has been held in 2022 [12] to rank the latest
verification tools. Hence it gives us a good idea of the performance of the bleeding-edge
technology in this area. The hardware used in the competition is the same for all tools (an
AWS solution). Multiple types of networks have been tested: complex UNet, convolutive,
ResNet, and other quite simple networks. They usually have from a few hundred to
hundreds of thousands of neurons with an input dimension of approximately 1000. Such
technology can verify up to a thousand networks in 5 minutes for the best ones. As an
example, the winner of the competition is a tool called α, β ´ CROWN which uses GPU-
accelerated bound propagation algorithm. For more details of the competition please see
the original paper.

2.2 Adversarial attacks

2.2.1 Neural Networks

Adversarial examples are the result of models being too linear [3].
The attacker’s goal is to generate a fake image x1, called the adversarial example, such

that x1 is similar to x to the human eye but misleads the classifier. In other words,

find x1 satisfying ∥x1
´ x∥ ď ε

such that Cpx1
q “ t ‰ y

8

We call adaptive adversaries, the attacks that are tailored to the particular details of
the model’s defense and attempt to invalidate the assertions of robustness. The different
attacks and defenses tactics are described in the papers [13, 4, 14].

2.2.1.1 White-box attacks

In a white-box attack, the attacker has access to the classifier C, or more generally the
model F and the victim sample px, yq. For instance, x can be an image and y a label. We
now list a few methods to generate x1.

Szegedy’s L-BFGS Attack The problem is formulated as a search for the closest ad-
versarial example x1 to x, it is a targeted attack

minimize ∥x ´ x1∥22
subject to Cpx1

q “ t and x1
P r0, 1s

m (1)

The term x1
P r0, 1s

m is called the box constraint, it aims to guarantee that x1 will
be within the definition domain of the images.

The problem is reformulated by introducing the loss function L to penalize the func-
tion to favor the classification of x1 as t. Finally, the parameter c is involved in the
search for the minimal distance to x.

minimize c∥x ´ x1∥22 ` Lpθ, x1, tq

subject to x1
P rO, 1s

m (2)

This optimization problem is solved with the L-BFGS algorithm.

Fast Gradient Sign Method (FGSM) It is a one-step method that can lead to a tar-
geted or untargeted attack. The formulation is:

x1
“ x ` ε signp∇xLpθ, x, yqq non-target (3)

x1
“ x ´ ε signp∇xLpθ, x, tqq target t (4)

For a targeted attack Equation 4 can be seen as a one-step gradient descent to solve
the following problem.

minimize Lpθ, x1, tq

subject to ∥x1
´ x∥8 ď ε and x1

P r0, 1s
m (5)

The benefits of the attack are its ease of use and the fact it is fast to generate an
example.

9

Basic Iterative Method (BIM). Basic Iterative Method can be seen as an iterative
version of the FGSM attack, it can also be a targeted or untargeted attack, the
untargeted formulation is:

x0 “ x

xt`1
“ Πx,ε

“

xt
` α signp∇xLθ, xt, yqq

‰ (6)

With Πx,ε being the projection on the ε-neighbor ball of x and α the step size.

A variation of this method is the Projected Gradient Descent (PGD) [14], which has
an added random initialization step of x0 within x ˘ ε.

Jacobian-Based Saliency Map Attack (JSMA). We compute the Jacobian of the
score function F . It can be seen as a greedy attack algorithm by iteratively ma-
nipulating the pixel which is the most influential to the model output. We use

JF pxq “
BF pxq

Bx
“

"

BFjpxq

Bix

*

iˆj

(7)

to model F pxq’s change in response to changes of its input x. Then, we build an
adversarial saliency map indicating which input features an adversary should perturb
to obtain the desired changes in the model output.

The term saliency map comes from computer vision. It is an image that highlights
the region on which people’s eyes focus first.

Carlini & Wagner’s Attack It is a reformulation of the targeted L-BFGS problem:

minimize ∥x ´ x1∥22 ` c ¨ fpx1, tq

subject to x1
P r0, 1s

m (8)

f is defined as fpx1, tq “ max
i‰t

Zpx1
qi ´ Zpx1

qt.i ‰ t. With Z such that F pxq “

softmax pZpxqq “ y

Minimizing f encourages the algorithm to find an x1 that has a larger score for class
t. By applying line search on constant c we can find an x1 that has the least distance
to x.

f is called the margin loss function.

Deep Fool It is an untargeted attack. It assumes that the NN is totally linear and hyper-
planes separate the class. Then the minimal perturbation is given by the projection
from one space to another.

10

2.2.1.2 Black-box attacks

A black box attack is a type of adversarial attack in which the attacker does not have
access to the internal workings of the AI system they are attacking. The attacker can only
manipulate the inputs of the network and see the output.

Substitute model The goal of this attack is to exploit “transferability”: a sample x1 that
can attack F1 is also likely to attack F2. The main steps of the attack are:

1. Synthesise the Substitute Training Dataset
2. Train the Substitute model
3. Augment the Dataset
4. Attack the substitute model

Model Inversion / Extraction The attacker inputs known data into the black box
model and examines the model’s output. By analyzing the output, the attacker
can learn information about the model’s internal workings, including its training
data, architecture, and parameters.

Zeroth Order Optimization (ZOO) It needs to have access to the confidence score
associated to the output label. It enables the gathering of information on the gradient
around the sample x by observing the changes in the confidence score as the image
is perturbed. We can approximate the gradient for a given index i with the following
formulation:

BF pxq

Bxi

«
F px ` heiq ´ F px ´ heiq

2h
We can now use a gradient-based attack. The success rate of ZOO is higher than
with a substitute model.

ColorFool [15] This method is specific to images; it uses a segmentation network to
decompose an image into semantic regions and then simply modify the a and b
values in the Lab space for each of these regions. In order to keep images that
still seem natural, these color modifications lie within a specific restrained range for
regions that are sensitive to the human eye (person, sky, vegetation, and water); for
other regions these modifications are unrestrained. For a given image and a given
model, ColorFool gets multiple attempts at fooling the model, with modifications of
increasing magnitude and the output of the model as only feedback. This method
has shown results comparable to white-box attacks, is robust to denoising, and has
moreover shown improved transferability (which is the success rate of misleading an
unseen classifier).

Hop Skip Jump Attack (HSJA) This attack [16] aims to estimate the gradient using
binary information at the decision boundary

SPSA The goal is to use the Simultaneous Perturbation Stochastic Approximation1 (SPSA)
1SPSA: https://www.jhuapl.edu/spsa/

11

https://www.jhuapl.edu/spsa/

algorithm to estimate the gradient [17].

2.2.1.3 Poisoning attacks

The concept of this attack is to change the training data set in order to manipulate its
behavior. It is quite difficult to detect when datasets are huge.

We can poison the model in different ways :

Label Flipping The attacker modifies the labels of the training data, causing the AI
system to learn incorrect relationships between inputs and outputs.

Data Injection The attacker adds malicious data to the training data, causing the AI
system to learn incorrect relationships between inputs and outputs.

Model Parameter Modification The attacker modifies the parameters of the AI model,
causing it to make incorrect predictions.

Koh’s Model Explanation It is a method to interpret DNNs. A model can explicitly
quantify the change in the final loss without retraining the model when only one
training is modified. This work can be adapted to poisoning attacks by finding those
training samples that have a large influence on the model’s prediction.

Poison Frogs Insert an adversarial image with a true label to the training set in order to
cause the trained model to wrongly classify a targeted sample.

2.2.1.4 Grey-box attacks

The attacker trains a Generative adversarial network (GAN) [18] targeting the model of
interest [19]. A GAN is a model in which two neural networks, the generator, and the
discriminator, compete with each other to become more accurate in their predictions. The
goal is to achieve high-fidelity generation.

The attacker can craft adversarial examples from the GAN. The main benefit is the
acceleration of the process to produce examples once the model is trained. This allows to
shift the cost of creating adversarial examples, as the method implies a big initial cost with
the training but afterward the cost to produce an example is cheap. This is particularly
interesting for adversarial training.

2.2.2 Decision Trees

Unlike Neural Networks, the algorithm to generate adversarial examples is poorly studied
for tree-based models. The main reason is that the method relying on gradient cant be
used as the models are discrete and non-differentiable.

Greedy search A first approach described in [20] is based on greedy search. It consists
in searching the neighborhood of the leaf producing the original prediction to find
another leaf labeled as a different class, it is the adversarial leaf. Then, it is necessary

12

to find the path from the original leaf to the adversarial leaf. Finally, the sample
is modified in relation to the conditions on the path from the original leaf to the
adversarial leaf. Thus, forcing the decision tree to misclassify the sample.

Cheng’s attack It focuses on the distance between the benign example and the deci-
sion boundary. The problem of finding an adversarial example is reformulated as a
minimization of this distance. It exploits the fact that the distance to the decision
boundary is usually smooth within a local region and can be found by binary search
given a direction vector

Kantchelian attack. It is a method relying on MILP to find the exact smallest distortion
necessary to mislead the model.

2.3 Building Safer Models

2.3.1 Countermeasures Against Adversarial Examples

There are three types of countermeasures 1) Gradient Masking/Obfuscation, 2) Robust
Optimization, and 3) Adversarial examples detection.

2.3.1.1 Gradient Masking/Obfuscation

Defensive distillation: "Distillation" is a technique to reduce the size of DNN architec-
tures. We define the temperature T of a softmax for a vector x of size K as the
following:

softmaxpx, T qi “
exi{T

řK
j“1 e

xj{T
for i “ 1, 2, . . . , K

An example of a training procedure with distillation is:

1. Train a network F on the given training set pX, Y q by setting the temperature
of the softmax to T .

2. Compute the scores given by F pXq again and evaluate the scores at temperature
T

3. Train another network F 1
T , the distilled model, using softmax at temperature T

on the dataset with soft labels pX,F pXqq.

4. Use the distilled network with softmax at temperature T “ 1, which is denoted
F 1
1 during prediction on test data (or adversarial example)

With the softmax we cause the inputs to become larger by a factor of T , meaning
for a sample x its neighbor x1 will be T times larger.

Shattered Gradients: The goal is to protect the model by prepossessing the data. We
use a non-smooth or non-differentiable pre-processor gp.q and then train a DNN
model f on gpXq. The trained classifier on fpgpXqq is not differentiable in terms

13

of x, causing the failure of adversarial attacks. thermometer encoding uses a pre-
processor to discretize an image’s pixel value xi into a l -dimensional vector.

Stochastic/Randomized Gradients: The goal is to randomize the DNN model in order
to confound the adversary. We train a set of classifiers s “ Ft : t “ 1, 2, ..., k. During
the evaluation of data x, we randomly select one classifier from the set s and predict
the label y. As the adversary has no idea which classifier is used by the prediction
model, the attack success rate will be reduced. Dropout can also be added.

Exploding & Vanishing Gradients: We use a generative model to project a potential
adversarial example onto the benign data manifold before classifying them. Adding
a generative model before the classifier DNN will cause the final classification model
to be extremely deep. The cumulative product of partial derivatives from each layer
will cause the gradient to be extremely small or irregularly large, which prevents the
attacker from accurately estimating the location of adversarial examples.

2.3.1.2 Adversarial Training

Robust training aims to improve the classifier’s robustness by changing the manner of
learning. Major focus:

1. Minimize the average adversarial loss

2. Maximize the average minimal perturbation distance

Typically, a robust optimization algorithm should have prior knowledge of its potential
threat or potential attack. The defenders build classifiers that are safe against this specific
attack.

Adversarial training with FGSM. We use Non-targeted FGSM to generate adversar-
ial example x1 for the training dataset. Then we add the adversarial example and
its true lab px1, yq into the training dataset. The goal is to increase the model’s
robustness against FGSM attacks. But it is still vulnerable to iterative attacks.

This approach can be improved for scalability with the use of batch and batch nor-
malization.

Adversarial training with PGD [14] The Projected gradient descent attack can be
seen as a heuristic method to find the "most adversarial" example in the l8 ball
around x. The training on the most-adversarial examples solves the problem of
learning model parameters θ that minimize the adversarial loss.

The model is trained only on adversarial examples, instead of a mix of normal samples
and adversarial examples. It gives good robustness against both single-step and
iterative attacks on MNIST and CIFAR10. However, the training is hard to scale as
the method involves an iterative attack to generate all training samples.

14

Ensemble adversarial training. The goal is to protect the model against the single-step
attack and can be applied to large datasets such as ImageNet.

It consists in augmenting the classifier’s, F , the training set with adversarial example
crafted from other pre-trained classifiers F1, F2, Then, for each sample x, we use
a single-step attack FGSM to craft adversarial examples x1 on the other classifiers.
Because of the transferability of the single-step attack across the different models,
x1 is also likely to mislead the classifier F . It means that these samples are a good
approximation for the "most adversarial" example for model F on x. Training these
samples together will approximately minimize the adversarial loss.

Accelerate adversarial training. It is a "free" adversarial training that improves effi-
ciency by reusing the backward pass calculation. The gradient of the loss to input:
BLpx ` δ, θq

Bx
and the gradient of the loss to model parameters:

BLpx ` δ, θq

Bθ
can be

computed together in one back propagation. (You Only Propagate Once (YOPO)).
Thus accelerating adversarial training.

Parametric Noise Injection [21] It consists of injecting noise to an ensemble of vectors
vk, k P r1, Ks, where each vk can be the input, a layer’s weights, or an inter-layer
tensor of the model f . The added noise is defined as follows:

v̄ik “ vik ` αk ¨ η, η „ N p0, σ2
q; @i P r1, Nks (9)

Nk being the length of the vector vk and σ “

d

1

Nk

ÿ

i

pvik ´ µq2 is the standard

deviation of vk. αk is a trainable parameter that is global to each vector vk, it is
optimized during adversarial training on PGD attacks, with an added term in the
loss that favors models whose predictions stay the same on adversarial examples in
order to prevent these αi to drop to 0.

Feature Denoising Most of the white-box gradient-based adversarial attacks result in
adding a restricted noise to the input, so denoising the input could be a natural
countermeasure to these attacks; the method developed in [22] takes this idea further
and implements denoising features operation within the neural network.

Fast adversarial training Two papers offer an extension of the “free” adversarial train-
ing [23, 24]. In the same way as the ”free” training the two approaches exploit the
backward propagation used to find the adversarial example to update the model.
However to improve the convergence they use cyclical learning rate [25] — the learn-
ing rate is the coefficient to use in the gradient descent. In a basic training loop the
learning rate is constant, and a bad value of this parameter leads to bad convergence,
however, to find the correct value some hyperparameter tuning must be done which
can be costly. The cyclical learning rate makes it possible not to depend on this
tuning.

15

Furthermore, to improve the computing efficiency of the training, the implementation
is made using mixed precision.

Catastrophic overfitting when using adversarial training with FGSM is also intro-
duced in [23]. Catastrophic overfitting the accuracy of the model’s evaluation sud-
denly decreases from an epoch, going from good to poor accuracy and showing no
improvement for the following epochs.

Figure 2: Illustration of catastrophic overfitting using FGSM adversarial training from
https://github.com/locuslab/fast_adversarial

2.3.2 Confidence Learning

Confidence learning consists, in the case of a classification problem, to predict, as well as
the class distribution, the overall confidence of the network in this distribution; as shown
in the work of Chuan Guo et al. [26], modern neural networks have a tendency to be less
calibrated, thus questioning the probability distribution interpretation of a classifier’s out-
put. Similarly to uncertainty prediction in regression tasks as done by Pavel Gurevich and
Hannes Stuke [27]. Terrance DeVries et al. [28] proposed a method to address this prob-
lem, by dividing the output of a network fθ into two branches: the usual class distribution
output p over M classes, and a scalar value representing the confidence of the network c:

p, c “ fθpxq pi, c P r0, 1s,
M
ÿ

i“1

pi “ 1 (10)

During training, the predictions are modified using the confidence prediction to inter-
polate between the model’s class prediction and the true label yi:

@i P r1,M s, p1
i “ c ¨ pi ` p1 ´ cqyi (11)

These new predictions are used to compute the usual classification loss Lt. A confidence
loss is also computed so that the network always aims for c “ 1:

Lc “ ´ log c (12)

16

The final loss we optimize for is then :

L “ Lt ` λLc (13)

λ being a hyperparameter weighting the importance of the confidence loss.

2.3.3 Data preparation

Data Sanitization. It is the process of cleaning, validating, and transforming to remove
or correcting errors, outliers, and other anomalies that could affect the accuracy and
robustness of an AI system. It is useful when you can’t be sure that the training is
not poisoned.

Data Augmentation. It consists in adding additional training data which is generated
from existing data by applying transformations such as rotations, translations, and
rescalings.

2.3.4 Ensemble learning

Ensembling is a technique in which multiple AI models are combined to make predictions,
with the final prediction being based on a combination of the predictions made by each of
the models. This can help to improve the accuracy and robustness of the AI system, by
reducing the risk of errors or biases in a single model [29].

2.3.5 Building easier to verify NNs

Since verifying the robustness of a model is a difficult task and is not always feasible
another idea is to train them in a way that brings them back within the tractable problems
category. The work of Baader et al. [30] proved that: for any continuous function f , there
exists a feed-forward fully-connected neural network with ReLU activations whose abstract
interpretation using the domains of intervals from an input region B is an arbitrarily close
approximation of f on B. This implies that in some capacity, for any neural network, there
exists another arbitrarily close neural network that can be more easily verified. This result
was later extended by Wang et al. in [31] to the broader family of activation functions.
Additionally, they studied the computational complexity of constructing neural networks
obeying the criterion needed in their constructive proof and showed that this problem was
strictly harder than NP-complete demonstrating that there was no universal efficient way
of building an approximated model easier to verify.

Nevertheless, Xiao et al. [32], empirically highlighted two useful properties in order to
obtain NNs easier to verify:

• Weight sparsity: having more zeros reduces the number of variables verifiers have to
handle

17

• Activation stability: ensuring that given an input x and a set of allowed perturbation
Adv(x), the activation function stays in the same state over Adv(x). This enables
the verifier to know in advance in which state the activation function will be thus
preventing him from having to consider both branches

To achieve these goal they use a number of techniques:

• for weight sparsity:

– ℓ1-regularization: a technique deterring the NN from relying too much on a
subset of neurons by adding a term in the loss function proportional to the sum
of the biases in absolute value;

– small weight pruning: a post-process method setting weights under a set thresh-
old to zero.

• Activation stability:

– RS Loss: a regularization technique for inducing ReLU Stability by adding a
term to the loss function based on estimates of the lower and upper bounds of
each neurons pre-activation. This estimates is computed using interval arith-
metic;

– ReLU pruning: a post-process method replacing ReLU function by the null
function or the identity if the ReLU is active or inactive on a large majority of
inputs.

2.4 Explainability

Explainability is a rather difficult concept to define because of its elusive nature. Indeed,
there is no clear definition of what an explication is. Marques-Silva and Ignatiev [33]
draw the distinction between two different types of explications, the formal ones and the
non-formal ones. Formal explainability is based on rigorously defined explications, it is
therefore sound. In contrast, non-formal explainability is more based on a straightforward
computation of a simpler and easier-to-understand model or on a set of features that
justify the explanation without drawing too much attention to formal logic. This in return
ensures that those explications are easier to understand at a human level while dropping
the soundness. It is important to note that, in the field of explainability as in the whole
field of machine learning, formal approaches are currently less popular. In the following
sections, we give an example of each type of explication.

2.4.1 Minimal explication - formal explainability

Marques-Silva presents two types of explications based on the computation of minimal
conjunctions of literals relating a feature with a specific range of values. He distinguishes
two types of such explications [34].

18

Abductive Explications : informally, this type of explication is the minimal answer to
the question “Why”. It is a set of features with an assigned range of values such that
if an input verifies the given formula then the prediction is guaranteed to be in a
certain class, independently of the values assigned to the remaining features.

Contrastive Explications : in contrast this explication answers the question “Why
not?”. It gives a subset of features which, if allowed to take some other value, and
when the remaining features remain unchanged, ensures that the prediction changes
to a class other than the initial one.

This second type of explication enables us to clearly draw a parallel between explicabil-
ity and verification since computing a contrastive explication is very similar to carrying out
an adversarial attack on the model. This approach extracts features playing an important
role in the decision of the model.

2.4.2 Verified perturbation analysis - non-formal explainability

According to Fel et al. [35], perturbations limited to the variables considered important
should easily influence the model’s decision. With that in mind, we can try to search for
the most important variables of the model.

For a given input x and a bounded perturbation δ, the verification methods allow us
to obtain a minimum fminpxq and a maximum fmaxpxq bound on the output of a model.
Formally @δ s.t ||δ||p ď ϵ:

fmin ď fpx ` δq ď fmax

This allows exploring the whole perturbation set without having to explicitly sample
all the points.

19

Figure 3: Figure 2 from [35]

The EVA technique, short for Explainable Visual AI, is a method used to understand
how neural networks make decisions about images.

To do this, EVA creates two versions of an input: one that is entirely perturbed and one
that is partially perturbed. In the entirely perturbed version, the entire input is distorted,
while in the partially perturbed version, only a portion of the input is distorted. By
comparing the outputs of these two versions, EVA can determine which part of the input
is more important for the decision.

Once the important parts of the input have been identified, EVA can then provide ex-
planations for the neural network’s decision. For example, if a neural network is classifying
an image of a dog, EVA might identify that the presence of the dog’s ears is crucial for the
decision.

2.4.3 Explainable Neural Networks

[36] [37] [38] [34]
Another way to make more explainable models is to format their architecture. xNN

Neural networks are an example of that.

20

Figure 4: Architecture of a xNN Network

An xNN Network is composed of 3 elements :

1. The Projection Layer: It is fully connected to the input layer and each node in this
layer learns a linear combination of the input features. The output of each node with
a ridge function applied is used as the input to exactly one subnetwork.

2. Subnetworks: Their use is to enhance the ridge functions used in the projection layer.
It’s the element that gives us explanations of how the models learn.

3. The Combination Layer: It is composed of a single node that gives as output the
weighted sum of all the ridge functions.

The reason we use the ridge function is that any continuous function can be approxi-
mated within an arbitrary precision by carefully selecting parameters in the network. On
top of that, ridge functions are linear and do aren’t affected by the dimensionality curse.

With this, we can get the scaled ridge functions and the projection coefficients of a
model:

21

Figure 5: Results that can be created when using xNN Network

The projection coefficients reveal how the input features are combined to feed each of
the ridge functions. When we talk about model recoverability, we mean the capacity to
identify the original mechanisms that produced the data. On the other hand, explainabil-
ity refers to the xNN’s capability to clarify how it approximates a complicated function
involving multiple variables, even if it doesn’t accurately capture the underlying process
that generated the data.

3 Plan for phase 2

3.1 Experiments

In light of the bibliographical study we carried out in phase 1, the objectives of this second
phase are as follows:

1. Setting up the different technologies

2. Selecting and building vanilla and robustly trained models

22

3. Testing, analyzing and comparing models’ performances on different points:

• Verification work

• Robustness to attacks

• Trades-off in performance

Point 1

In general, papers give access to the code they use. However, a part of them are using
licensed software, paid cloud solution for hardware, or the code is not maintained and do
not work anymore. In other cases, some pieces of code have uncommon libraries with little
to no documentation.

Point 2

This part is particularly important because there exist about as much different metrics and
benchmarks as there are different papers. this makes it hard to compare results to have a
broader view of the field. By having a hand on the whole process we are able to have a
common reference frame to actually compare approaches.

Nevertheless, due to our limited resources and the issues discussed in point 1, we are
currently not sure what we will be able to achieve.

Point 3

Once we have been able to deploy the different technologies and have trained the models,
we can benchmark and compare them. We plan to test the verification methods on three
criteria: the size of models which can be verified, the time it takes, and whether or not it
is able to prove the robustness of robust models.
Regarding the assessment of the robustness of a model the paper [39] gives a methodology
to orientate the process and also gives some recommendations. The first steps in this eval-
uation are 1) Define a threat model: assumptions about the adversary’s goals, knowledge,
and capabilities. 2) Find the adaptive adversaries. Finally, we want to test how robust
models compare to regular ones in terms of performance to evaluate the trade-off between
robustness and accuracy.

3.2 Tools

There is a wide variety of tools used in the field and we do not know yet which we are
going to use but this section presents a non-exhaustive list of the tools we encountered and
plan to use.

23

3.2.1 Verification

Neural Networks To verify the robustness of neural networks we can use as references the
paper [12] which reports the result of a competition of verification covering multiple
formal methods mentioned above.

Decision Trees To verify the robustness of decision tree we use the code2 associated to
paper [11].

3.2.2 Attacks and defenses

Neural Networks To test the attacks and defenses (adversarial training) for neural net-
works we will study 3 libraries, DeepRobust, Cleverhans, and Foolbox [40, 41, 42].
Deeprobust proposes the implementation of the algorithms described in [4]. We also
use the code3 associated to paper [13].

Decision trees To test the attack and defense on decision trees, we use the code 4 asso-
ciated to the paper [43].

3.2.3 Training easier to verify NNs

We plan to use the code5 introduced in [32] to experiment with ReLU-stability impact on
verification on models.

4 Experiments
Experiments We conduced multiple experiments among others:

1. Train the same model with and without adversarial training.

2. Compare the efficiency of attacks according to the training mode of the model.

3. Use the different verification methods on these models.

4.1 The framework

4.1.1 The datasets

The papers usually work with MNIST and CIFAR10. However, these datasets have some
drawbacks: MNIST is an overused dataset which is too easy and does not represent mod-
ern classification problems. CIFAR10 is harder leading to the need to use relatively heavy

2treeVerification: https://github.com/chenhongge/treeVerification
3nn_robust_attack: https://github.com/carlini/nn_robust_attacks
4RobustTrees: https://github.com/chenhongge/RobustTrees
5ReLU stability: https://github.com/MadryLab/relu_stable

24

https://github.com/chenhongge/treeVerification
https://github.com/carlini/nn_robust_attacks
https://github.com/chenhongge/RobustTrees
https://github.com/MadryLab/relu_stable

models, which is not possible with our computing means. This is why we use Fashion-
MNIST whose difficulty lies between MNIST and CIFAR10. The Table 1 describes some
specific features of the three datasets and the Figure 6 shows some images from the dataset.

MNIST FashionMNIST CIFAR10
Training samples 60,000 60,000 50,000
Test samples 10,000 10,000 10,000
Dimension 28 × 28 28× 28 32× 32
Color Grayscale Grayscale RGB

Table 1: Deatails on the datasets MNIST, FashionMNIST and CIFAR10

(a) MNIST (b) FashionMNIST (c) CIFAR10

Figure 6: Images from the three datasets, MNIST, FashionMNIST, and CIFAR10,
https://www.tensorflow.org/datasets/catalog/

4.1.2 The model

As a model, we used the “small” CNN as in [32] it has 2 convolution layers and 2 fully
connected layers which correspond to around 166.000 trainable parameters. The full model
representation can be seen in Figure 13.

25

Convolution: 4× 4, 16 filters

Convolution: 4× 4, 32 filters

Flatten

Fully connected: 100 units

Fully connected: 10 units

Input 3× 32× 32

Output 1× 10

ReLU

ReLU

ReLU

Figure 7: The “small” CNN representation

4.1.3 Training a model

We trained the model previously described on the three datasets with and without ad-
versarial training. We also benefit from the advantages of fast adversarial training to
compute the accuracy of the evaluation datasets for all epochs. The code of the fast ad-
versarial training is made in PytTorch and uses the NVIDIA apex library 6 to implement
the mixed precision, however, the mixed precision part of this library is deprecated, and it
is recommended to use the mixed precision implemented in PytTorch (PytTorch AMP) 7.
Furthermore, the code introduces in [23] provides a value for the cyclic learning rate that
does not work with our model, which is not the case for the code of [24] which provides a
value for a small CNN. For this reason, we will only use the second code.

The training is made with the basic training loop and with the fast approach. To
perform the adversarial attacks we replaced all original images with adversarial examples
computed with either FGSM or PGD attacks.

4.1.4 The attacks

The CleverHans library implements attacks in PyTorch and tensorflow, as we wanted the
environment to be small enough to run on the computer at ENSEEIHT we added the
used attacks and dependencies directly in the project. We now list the available attacks in
PyTorch that can be easily added to an existing framework

• From CleverHans:

– Fast Gradient Sign Method (FGSM)

– Projected Gradient Descent (PGD)

– Carlini & Wagner l2 (CW)

6NVIDIA Apex: https://github.com/NVIDIA/apex
7PytTorch AMP: https://pytorch.org/docs/stable/amp.html

26

https://github.com/NVIDIA/apex
https://pytorch.org/docs/stable/amp.html

– SPSA

– Hop Skip Jump Attack (HSJA)

• From DeepRobust:

– DeepFool

The available attacks can be classified as follows in Table 2, they can be separated into
two classes gradient-based and non-gradient based with several available norms.

Features FGSM PGD CW SPSA HSJA DeepFool
Gradient-based ✓ ✓ ✓ × × ×
Iterative method × ✓ ✓ ✓ ✓ ✓
Norm l1, l2, l8 l2, l8 l2 l1, l2, l8 l2, l8 l2

Table 2: Classification of the several attacks

4.2 Impact of the adversarial example for the training

We compare in Figure 8 the accuracy of the three different training methods using clean
samples and FGSM and PGD adversarial examples from the test datasets. We can see
for the basic training in Figure 8a that the accuracy is poor for the adversarial examples.
However, the fact that the accuracy is decreasing and that it is not constantly bad can
be explained by on the one hand, over the epochs the models converge towards a model
specialized on the input data, making its gradient more informative and thus making it
easier to attack. On the other hand, as from the first epochs, the model can misclassify a
sample and an attack can accidentally make it predict the correct label. For adversarial
training with FGSM and PGD in Figure Figure 8b and Figure 8c that the convergence
is similar and the accuracy is slightly lower for the adversarial examples than the clean
samples.

27

 20

 40

 60

 80

 100

 0 5 10 15 20

A
cc

u
ra

cy
 (

%
)

Epoch

Clean

FGSM

PGD

(a) Basic training

 40

 60

 80

 100

 0 5 10 15 20

A
cc

u
ra

cy
 (

%
)

Epoch

Clean

FGSM

PGD

(b) FGSM adversarial training

 40

 60

 80

 100

 0 5 10 15 20

A
cc

u
ra

cy
 (

%
)

Epoch

Clean

FGSM

PGD

(c) PGD adversarial training

Figure 8: Accuracy using clean samples and adversarial examples crafted with FGSM and
PGD from the test samples for the models trained with basic training and FGSM and PGD
adversarial training using the fast training code

In Figure 9 and Figure 10 we compare, for the fast and the basic training, the conver-
gence of the accuracy on the train samples — as this is the only available accuracy for
the basic training, on the FashionMNIST and CIFAR10 datasets. For the clean samples,
the difference between the fast and basic training is the use of a cyclical learning rate.
For FashionMNIST, the convergence on the clean samples is slightly better and for the
FGSM adversarial examples, the number of epochs does not allow a trend to be deter-
mined. However, for the CIFAR10 the basic training is achieve a better convergence in
both cases. This could be explained by the choice of the bounds chosen for the cyclical

28

learning rate It seems that the default value of the learning rate of the optimize performs
better than an advanced technique which is supposed to avoid performing hyperparameter
tuning but does not work out of the box. So fine-tuning seems necessary to properly exploit
the fast training. However, for the adversarial training, the accuracy stagnates which can
be explained by the fact that the problem is too hard for this simple model.

 50

 75

 100

 0 5 10 15 20

Tr
a
in

 A
cc

u
ra

cy
 C

le
a
n
 (

%
)

Epoch

Fast Clean

Fast FGSM

Basic clean

Baisc FGSM

Figure 9: Comparison of the accuracy on the training samples use on the corresponding
epoch between the basic and the fast train with the clean samples and FGSM adversarial
examples on FashionMNIST

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25 30 35 40

Tr
a
in

 A
cc

u
ra

cy
 C

le
a
n
 (

%
)

Epoch

Fast Clean

Fast FGSM

Basic clean

Baisc FGSM

Figure 10: Comparison of the accuracy on the training samples use on the corresponding
epoch between the basic and the fast train with the clean samples and FGSM adversarial
examples on CIFAR10

4.3 Evaluating the model’s accuracy

We compare in Table 3 the accuracy of the same previous model against a range of attacks
on FashionMNIST. It enlightens the fact that adversarial training leads to a small loss of
accuracy of the clean samples. However, for the gradient-based attacks — FGSM, PGD,

29

CW, the accuracy is clearly better for an adversarially trained model by a factor of up to 6.
Nevertheless, for the non-gradient-based attacks, the performance is still catastrophic for
HSJA and DeepFool. The accuracy is really good against SPSA which can be explained
by the fact that the parameters of the attack do not allow the attack to be strong enough.
For the test on CIFAR10 in Table 4 the global trend is maintained, but as seen previously
in Figure 10 the overall accuracy of the adversarial training is poor.

Attacks
names

Acurracy
Clean FGSM PGD

Clean 91.54 88.90 88.79
FGSM 28.08 84.92 84.89
PGD 20.73 82.38 83.43
CW 12.37 73.43 73.92
SPSA 85.81 88.54 88.30
HSJA 3.860 5.029
Deepfool 6.300 7.970 7.990

Table 3: Comparison of the model’s accuracy against some attacks between the training
with clean samples and with PGD adversarial examples using the fast training code on
FashionMNIST

Attacks
names

Acurracy
Clean PGD

Clean 72.59 37.81
FGSM 12.44 32.47
PGD 10.34 31.81
CW 16.13 36.09
SPSA 66.61 37.25
HSJA 10.38 16.53
Deepfool 14.52 19.43

Table 4: Comparison of the model’s accuracy against some attacks between the training
with clean samples and with PGD adversarial examples using the fast training code on
CIFAR10

We now assess the impact of the ε value of the attack on a model trained with attacks
using a fixed value of ε “ 10 on FashionMNIST. We can see for the training on clean
samples in Figure 11 that the accuracy quickly decreases and then stagnates. For the
adversarial training, the PGD training is slightly more accurate but for both the accuracy
quickly decreases for ε higher than the one used for the training (10).

30

 10

 30

 50

 70

 90

 10 20 30 40

Train epsilon

Te
st

 a
cc

u
ra

y
 f

o
r

P
G

D

Epsilon

Clean
FGSM

PGD

Figure 11: Evolution of the accuracy for the PGD attack for several ε values on the test
samples on the model trained with clean samples and with FGSM and PGD adversarial
examples with ε “ 10 with the basic training code on FashionMNIST

The Figure 12 illustrates an attack using PGD on a FashionMNIST, the trouser is
misclassified as a T-shirt. We can see that the perturbation modifies around 65% pixels of
the image with an intensity of ˘0.06 for pixels values between 0 to 1.

Figure 12: Example of a PGD adversarial attack on a FashionMNIST image

4.4 Confidence Learning

This experiment aimed to see if confidence learning, which has proven to be useful at
predicting out-of-distribution (OOD) examples as such, could also be used to make a

31

neural network robust against adversarial examples, which could be considered as OOD
examples.

The first step consists of modifying the network in order to also output a confidence
bit, this results in the architecture presented in Figure 13 :

Convolution: 4 4, 16 filters

Convolution: 4 4, 32 filters

Input: 3 32 32

Flatten

Fully connected: 100 unitsFully connected: 100 units

Fully connected: 10 units Fully connected: 1 unit

Class output: 1 10 Confidence output: 1 1

Figure 13: The “small” CNN representation with an added confidence prediction branch.

The next step is to train this network on the dataset, here FashionMNIST, using the
loss formulated in Eq. 13 to train the confidence prediction alongside class prediction. The
trained model is well calibrated on clean examples, as its confidence follows the percentage
of correctly classified examples with the given confidence (Figure 14a), it also has a correct
accuracy (Tab. 5). Nevertheless, on adversarial examples the model is no more well
calibrated, correctly classifying examples with high uncertainty or misclassifying them
with high confidence, the overall accuracy of the model also drops on adversarial examples
(Tab. 5).

Accuracy Average Confidence
Clean 83.3 87.2
FGSM 16.1 67.5
PGD 18.8 84.8

Table 5: Accuracy and confidence (in %) of the network on Clean, FGSM, and PGD
examples.

32

(a) (b)

Figure 14: Percentage of correctly classified clean images with respect to the confidence
output for clean (14a) and adversarial (14b) examples.

4.5 Verification

4.5.1 Neural networks

To verify neural networks we used α ´ β ´ CROWN which implements complete and
incomplete verification in python using bound propagation. For some features it requires
licence optimizers (Gurobi and CPlex). This tool is very complete having multiple verifi-
cation type and adding custom models is straightforward.

The experiment consisted in evaluating the performance of α´ β ´CROWN on three
common classification data sets (MNIST, FashionMNIST, CIFAR-10) with three models
based on cnn_small (a small convolution neural networks of 160 thousands parameters).
Clean was trained in a standard way, FGSM was trained with adversarial FGSM attacks, PGD
was trained with adversarial PGD attacks. Then the verifier was run on 100 inputs, giving
the following results:

Data
sets

Verified accuracy Execution time in second
Clean FGSM PGD Clean FGSM PGD

MNIST 61 97 97 3480 54 325
FashionMNIST 9 60 73 1118 1536 325
CIFAR-10 0 0 0 39 287 813

Table 6: Percentage of safe input (Verified accuracy) depending on the model and the data
set

On small data sets (MNIST, FashionMNIST), robusts training worked really well, giving
a higher number of safe inputs with better adversarial training. For CIFAR-10, our base
model was not big enough to give good results even in classic classification.

4.5.2 Weight sparsity and ReLU stability

We studied methods presented by Xiao et al. [32] and tested them in contexts not presented
in the original paper. (For more details on the code see Appendix D)). In each case, three

33

models were trained, the results presented below are the average of the observed results.
The small size of each sample is due to the fact that we have limited resources. It is not a
problem in general given the proximity of the measured results except for the case of the
ReLu pruning in the first layer where we observed variations from simple to double.

In Table 7, it is clear that the different techniques used to reduce the complexity of
systems solved to verify models do not affect accuracy. The accuracy for naturally trained
model on MNIST with ϵ “ 10{255 is unexpectedly high. Nevertheless, the fact that
ℓ1-regularization and RS Loss are methods meant to be used in addition to adversarial
training and that their weight in the loss has been optimized for ϵ near 0.1 can explain this
good accuracy.

Data set ϵ
Adv.

training

Training with
ℓ1-reg + RS Loss

Post process
Weight prune ReLU prune

Clean PGD Clean PGD Clean PGD

MNIST
10/255 yes 97.64 94.17 97.65 94.18 97.55 –

no 97.00 82.37 97.04 82.74 97.02 –

0.1 yes 97.29 89.20 97.30 89.25 97.19 –
no 97.17 24.59 97.22 24.52 97.07 –

FashionMNIST 0.1 yes 76.65 60.71 76.73 61.03 – –
no 85.88 14.60 85.96 14.55 – –

Table 7: Models’ accuracy (in %) at each processing step in different settings

We have not been able to compute clean accuracy for FashionMNIST nor PGD accura-
cies post ReLU pruning due to issue with the verifier used (see Appendix D).Additionnaly,
generated systems could not be solved nor their size be extracted. Thus, the next two
tables will present the impact of weight and ReLU pruning on their respective total.

Table 8 shows the number of weights left after weight pruning. Despite the fact that
models’ accuracy presented in Table 7 do not vary significantly after weight pruning, this
table shows that in general 25% of weights were pruned. More precisely, less than half of
weight of the first layer, a fourth of the second and 90% of the third were left untouched.
We can also see that in general, less weights are pruned in adversarially trained models.
Intuitively, this comes naturally since the adversarial training force the model to learn a
more detailed approximation of the classification.

34

Data set ϵ Adv. training Layer1 Layer2 Layer3

MNIST
10/255 yes 150.67 2732.33 123745.67

no 107.33 2026.00 124560.67

0.1 yes 196.00 3640.33 129087.00
no 102.67 1933.33 123970.33

FashionMNIST 0.1 yes 167.00 2774.00 126489.67
no 116.00 2775.33 131670.00

Total 400 12800 156800

Table 8: Number of remaining non zero weights in each layer of the NN after weight
pruning

Table 9 shows the number of ReLU functions which have not been replaced either by
the null function or the identity. We can see that for MNIST, less than 20% of ReLUs
are still present meaning that RS Loss is very effective at encouraging ReLU stability. For
FashionMNIST, this number drops to 30%, this is probably due to the fact that the weight
of RS Loss in the loss fnction has been optimized for MNIST. Finally, the same remark
about the difference between naturally and adversially trained models on the previous table
holds here again.

Data set ϵ Adv. training Layer1 Layer2 Layer3

MNIST
10/255 yes 402.00 637.33 48.33

no 119.00 501.00 58.50

0.1 yes 739.00 511.67 40.67
no 108.33 499.00 52.33

FashionMNIST 0.1 yes 1284.33 538.33 36.00
no 290.00 608.00 50.33

Total 3136 1568 100

Table 9: Number of ReLU left in each layer of the NN after ReLU pruning

4.5.3 Decision trees

The tool used here is treeV erification [11]. Tests were made the same way as for neural
networks, but since the models are trees, the adversarial training was quite different and
made with a software from the same authors 8. The data sets were the same except for
one, and the accuracy that is possible to lose with attacks on the 100 inputs provided was
compared:

8https://github.com/chenhongge/RobustTrees

35

Data
sets

Maximum possible loss of precision Execution time in second
Clean Robust Clean Robust

MNIST 100 0 40 86
FashionMNIST 100 30 46 73

Table 10: Maximum possible loss of precision depending on data set and model

The results are similar to those for neural networks, meaning that the adversarial
training was highly efficient. The running time for unrobust model is taking

4.5.4 Other tools

Please find in Appendix the list of tools that we tried with their operating status.

4.6 Explainability

4.6.1 SHAP and LIME

Those tools are based on Shapeley values, a concept that comes from Game’s Theory.
Those tools are described as feature attribution methods, as they assign an importance
grade to each feature of an input.

LIME is much more documented than SHAP, and comes with various notebook tuto-
rials, making it the most viable option between both.

However, even if they can be really efficient in certain examples, those tools cannot be
trusted for two reasons :

• Both tools compute approximate shapeley values, as computing the exact value is
time-consuming.

• Shapeley values aren’t formally viable to explain every feature as their explanations
are local, and certain well-crafted inputs can show the limits of this method.

4.6.2 Anchor

Anchor is a tool described as a feature selection method. "An anchor explanation is a rule
that sufficiently ’anchors’ the prediction locally – such that changes to the rest of the feature
values of the instance do not matter" Thus, we can have multiple anchor explanations for
one input.

This method seems promising but could be subject to the same problem as SHAP and
LIME which have unstable formal foundations.

36

5 Conclusion

Appendices
Appendix A Reproduce the experiments
For the basic training: Batch size = 512, Epochs = 20 for Fashion MNIST 40 for CI-
FAR10, Epislon = 0.0392 (=10/255), PGD: eps_iter = 0.01 , iter = 40

For the fast training: The parameters used are dumped in the first line of the
corresponding log file of a training for instance:

Namespace(batch_size=256, data_dir=’cifar-data’, dataset=’CIFAR10’, model=’cnn_small’,
epochs=40, lr_schedule=’cyclic’, lr_max=0.003, attack=’fgsm’, eps=10.0, attack_iters=10,
pgd_train_n_iters=10, pgd_alpha_train=2.0, fgsm_alpha=1.25, minibatch_replay=1,
weight_decay=0.0005, attack_init=’zero’, fname=’plain_cifar10’, seed=0, gpu=0, de-
bug=False, half_prec=False, grad_align_cos_lambda=0.0, eval_early_stopped_model=False,
eval_iter_freq=50, n_eval_every_k_iter=256, n_layers=1 (unused), n_filters_cnn=4
(unused), batch_size_eval=256, n_final_eval=1000)

For the attacks: the parameters of the attacks used for to assess the accuracy of the
models are available in the configuration file config_file/evaluation.cfg

For the verifications:

• Neural network: for CROWN all the parameters are described in configuration files in
α´β-CROWN/complete_verifier/exp_configs/tutorial_examples/"config".yaml

• Decicion tree: all the parameters are described in
treeVerification/config_"dataset"_"training".json

Appendix B Run the project
The adversarial training and attacks environment is based on Python 3.10, it is cre-
ated from conda. The full steps to create this environment is described on the project’s
github. Some dependencies are described below. The full dependencies are available in
env_files/conda_info.txt and env_files/full_conda_env.txt

37

Python: 3.10.9
conda: 23.1.0

Package Version

pytorch 1.13.1

pytorch-cuda 11.7

torchvision 0.14.1

numpy 1.23.5

Table 11: Package versions

The neural network verification makes use of Python 3.7 and also relies conda. The list
of dependencies are available in alpha-beta-CROWN/complete_verifier/environment.yml.
The feature requiring licences (Gurobi and CPlex) were not used in our project. As for
the tree verifier, libuv and libboost are required to compile the tool but it is already
compiled in our repository.

Appendix C Tool list

Name State Comments
α ´ β ´ CROWN a usable CPLEX and Gurobi for full features

MN-BaB b unusable password for gitlab submodule required
VeriNet c unusable Xpress licence required
nnenum d usable no issues
CGDTest e unusable repository not reachable (404)
PeregriNN f unusable a file was missing
Marabou g unusable compilation issues
Debona h usable no explanation so arguments hard to determine

FastBATLLNN i unusable no readme and install script does not work
treeVerification j usable works straightforward

Table 12: List of tools for verification

ahttps://github.com/Verified-Intelligence/alpha-beta-CROWN
bhttps://github.com/eth-sri/mn-bab
chttps://github.com/vas-group-imperial/VeriNet
dhttps://github.com/stanleybak/nnenum
ehttps://github.com/vin-nag/CGD.git
fhttps://github.com/haithamkhedr/PeregriNN/tree/vnn2022
ghttps://github.com/NeuralNetworkVerification/Marabou
hhttps://github.com/ChristopherBrix/Debona
ihttps://github.com/jferlez/FastBATLLNN-VNNCOMP
jhttps://github.com/chenhongge/treeVerification

38

Appendix D Weight sparsity and ReLU stability
We directly used the code of the authors available on GitHub9. However, the code uses
deprecated functions of TensorFlow and needed to be updated to use the proposed solver,
MIPVerify10. This updated version along with the details of the parameters used in the
experiments can be found on our GitHub repository under the folder relu_stability.
Additionally, despite our best effort, due to a lack of documentation, we were not able to
verify trained models because the solver crashes when reaching time limit and we are not
sure if this comes from MIPVerify, JuMP11 or Gurobi12.

We also tried without success to convert trained models checkpoints in .onnx, a format
accepted by α ´ β-CROWN with tf2onnx13.

Overall, it is probably better to reimplement from the beginning the ideas of Xiao et
al. [32].

9https://github.com/MadryLab/relu_stable
10https://github.com/vtjeng/MIPVerify.jl
11https://jump.dev/JuMP.jl/stable/
12https://www.gurobi.com/
13https://github.com/onnx/tensorflow-onnx/

39

References
[1] Dan Cireşan, Ueli Meier, Jonathan Masci, and Jürgen Schmidhuber. Multi-column

deep neural network for traffic sign classification. Neural Networks, 32:333–338,
2012. ISSN 0893-6080. doi: https://doi.org/10.1016/j.neunet.2012.02.023. URL
https://www.sciencedirect.com/science/article/pii/S0893608012000524. Se-
lected Papers from IJCNN 2011.

[2] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks, 2013. URL
https://arxiv.org/abs/1312.6199.

[3] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and Harness-
ing Adversarial Examples, March 2015. URL http://arxiv.org/abs/1412.6572.

[4] Han Xu, Yao Ma, Haochen Liu, Debayan Deb, Hui Liu, Jiliang Tang, and Anil K. Jain.
Adversarial Attacks and Defenses in Images, Graphs and Text: A Review, October
2019.

[5] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[6] Zeshan Kurd and Tim Kelly. Establishing Safety Criteria for Artificial Neural Net-
works. In Knowledge-Based Intelligent Information and Engineering Systems, vol-
ume 2773, pages 163–169, September 2003. ISBN 978-3-540-40803-1. doi: 10.1007/
978-3-540-45224-9_24.

[7] Caterina Urban and Antoine Miné. A Review of Formal Methods applied to Machine
Learning, April 2021.

[8] Rudy Bunel, Ilker Turkaslan, Philip H. S. Torr, Pushmeet Kohli, and M. Pawan
Kumar. A Unified View of Piecewise Linear Neural Network Verification, May 2018.

[9] Vincent Tjeng, Kai Xiao, and Russ Tedrake. Evaluating Robustness of Neural Net-
works with Mixed Integer Programming, February 2019.

[10] Caterina Urban, Maria Christakis, Valentin Wüstholz, and Fuyuan Zhang. Perfectly
Parallel Fairness Certification of Neural Networks, April 2020.

[11] Hongge Chen, Huan Zhang, and Cho-Jui Hsieh. Robustness Verification of Tree-based
Models. page 12, 2019.

[12] Mark Niklas Müller, Christopher Brix, Stanley Bak, Changliu Liu, and Taylor T.
Johnson. The Third International Verification of Neural Networks Competition (VNN-
COMP 2022): Summary and Results, December 2022.

40

https://www.sciencedirect.com/science/article/pii/S0893608012000524
https://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1412.6572
http://www.deeplearningbook.org

[13] Nicholas Carlini and David Wagner. Towards Evaluating the Robustness of Neural
Networks, March 2017. URL http://arxiv.org/abs/1608.04644.

[14] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards Deep Learning Models Resistant to Adversarial Attacks,
September 2019. URL http://arxiv.org/abs/1706.06083.

[15] Ali Shahin Shamsabadi, Ricardo Sanchez-Matilla, and Andrea Cavallaro. ColorFool:
Semantic Adversarial Colorization, April 2020.

[16] Jianbo Chen, Michael I. Jordan, and Martin J. Wainwright. Hopskipjumpattack:
A query-efficient decision-based attack. In 2020 IEEE Symposium on Security and
Privacy (SP), pages 1277–1294, 2020. doi: 10.1109/SP40000.2020.00045.

[17] Jonathan Uesato, Brendan O’Donoghue, Aaron van den Oord, and Pushmeet Kohli.
Adversarial risk and the dangers of evaluating against weak attacks, 2018. URL
https://arxiv.org/abs/1802.05666.

[18] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks.
Commun. ACM, 63(11):139–144, oct 2020. ISSN 0001-0782. doi: 10.1145/3422622.
URL https://doi.org/10.1145/3422622.

[19] Chaowei Xiao, Bo Li, Jun-Yan Zhu, Warren He, Mingyan Liu, and Dawn Song.
Generating adversarial examples with adversarial networks, 2018. URL https:
//arxiv.org/abs/1801.02610.

[20] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. Transferability in Machine
Learning: From Phenomena to Black-Box Attacks using Adversarial Samples, May
2016.

[21] Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. Parametric Noise Injection: Train-
able Randomness to Improve Deep Neural Network Robustness against Adversarial
Attack, November 2018.

[22] Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan Yuille, and Kaiming He. Feature
Denoising for Improving Adversarial Robustness, March 2019.

[23] Eric Wong, Leslie Rice, and J. Zico Kolter. Fast is better than free: Revisiting
adversarial training, 2020. URL https://arxiv.org/abs/2001.03994.

[24] Maksym Andriushchenko and Nicolas Flammarion. Understanding and improving fast
adversarial training, 2020. URL https://arxiv.org/abs/2007.02617.

[25] Leslie N. Smith. Cyclical learning rates for training neural networks. In 2017 IEEE
Winter Conference on Applications of Computer Vision (WACV), pages 464–472,
2017. doi: 10.1109/WACV.2017.58.

41

http://arxiv.org/abs/1608.04644
http://arxiv.org/abs/1706.06083
https://arxiv.org/abs/1802.05666
https://doi.org/10.1145/3422622
https://arxiv.org/abs/1801.02610
https://arxiv.org/abs/1801.02610
https://arxiv.org/abs/2001.03994
https://arxiv.org/abs/2007.02617

[26] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On Calibration of
Modern Neural Networks, August 2017.

[27] Pavel Gurevich and Hannes Stuke. Pairing an arbitrary regressor with an artificial
neural network estimating aleatoric uncertainty, September 2018.

[28] Terrance DeVries and Graham W. Taylor. Learning Confidence for Out-of-Distribution
Detection in Neural Networks, February 2018.

[29] M. A. Ganaie, Minghui Hu, A. K. Malik, M. Tanveer, and P. N. Suganthan. Ensemble
deep learning: A review. Engineering Applications of Artificial Intelligence, 115:
105151, October 2022. ISSN 0952-1976. doi: 10.1016/j.engappai.2022.105151.

[30] Maximilian Baader, Matthew Mirman, and Martin Vechev. Universal Approximation
with Certified Networks, January 2020.

[31] Zi Wang, Aws Albarghouthi, Gautam Prakriya, and Somesh Jha. Interval Univer-
sal Approximation for Neural Networks. Proceedings of the ACM on Programming
Languages, 6(POPL):1–29, January 2022. ISSN 2475-1421. doi: 10.1145/3498675.

[32] Kai Y. Xiao, Vincent Tjeng, Nur Muhammad Shafiullah, and Aleksander Madry.
Training for Faster Adversarial Robustness Verification via Inducing ReLU Stability,
April 2019.

[33] Joao Marques-Silva and Alexey Ignatiev. Delivering Trustworthy AI through formal
XAI. In Proc. of AAAI, pages 3806–3814, 2022. URL https://scholar.google.
com/citations?view_op=view_citation&hl=en&user=1b9hppwAAAAJ&sortby=
pubdate&citation_for_view=1b9hppwAAAAJ:KS-xo-ZNxMsC.

[34] Joao Marques-Silva. Logic-Based Explainability in Machine Learning, October 2022.

[35] Thomas Fel, Melanie Ducoffe, David Vigouroux, Remi Cadene, Mikael Capelle, Claire
Nicodeme, and Thomas Serre. Don’t Lie to Me! Robust and Efficient Explainability
with Verified Perturbation Analysis. arXiv, February 2022.

[36] Joel Vaughan, Agus Sudjianto, Erind Brahimi, Jie Chen, and Vijayan N. Nair. Ex-
plainable Neural Networks based on Additive Index Models, June 2018.

[37] Zebin Yang, Aijun Zhang, and Agus Sudjianto. Enhancing Explainability of Neural
Networks through Architecture Constraints, September 2019.

[38] Vugar Ismailov. Notes on ridge functions and neural networks, August 2020.

[39] Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas Rauber,
Dimitris Tsipras, Ian Goodfellow, Aleksander Madry, and Alexey Kurakin. On Eval-
uating Adversarial Robustness, February 2019.

42

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=1b9hppwAAAAJ&sortby=pubdate&citation_for_view=1b9hppwAAAAJ:KS-xo-ZNxMsC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=1b9hppwAAAAJ&sortby=pubdate&citation_for_view=1b9hppwAAAAJ:KS-xo-ZNxMsC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=1b9hppwAAAAJ&sortby=pubdate&citation_for_view=1b9hppwAAAAJ:KS-xo-ZNxMsC

[40] Yaxin Li, Wei Jin, Han Xu, and Jiliang Tang. DeepRobust: A PyTorch Library for
Adversarial Attacks and Defenses, May 2020.

[41] Nicolas Papernot, Fartash Faghri, Nicholas Carlini, Ian Goodfellow, Reuben Fein-
man, Alexey Kurakin, Cihang Xie, Yash Sharma, Tom Brown, Aurko Roy, Alexander
Matyasko, Vahid Behzadan, Karen Hambardzumyan, Zhishuai Zhang, Yi-Lin Juang,
Zhi Li, Ryan Sheatsley, Abhibhav Garg, Jonathan Uesato, Willi Gierke, Yinpeng
Dong, David Berthelot, Paul Hendricks, Jonas Rauber, Rujun Long, and Patrick Mc-
Daniel. Technical Report on the CleverHans v2.1.0 Adversarial Examples Library,
June 2018. URL http://arxiv.org/abs/1610.00768.

[42] Jonas Rauber, Wieland Brendel, and Matthias Bethge. Foolbox: A Python toolbox
to benchmark the robustness of machine learning models, March 2018.

[43] Hongge Chen, Huan Zhang, Duane Boning, and Cho-Jui Hsieh. Robust decision trees
against adversarial examples. In Kamalika Chaudhuri and Ruslan Salakhutdinov,
editors, Proceedings of the 36th International Conference on Machine Learning, vol-
ume 97 of Proceedings of Machine Learning Research, pages 1122–1131. PMLR, 09–15
Jun 2019.

43

http://arxiv.org/abs/1610.00768

	Introduction
	Model studied
	Neural networks
	Decision trees

	Bibliography
	Formal verification
	Goals
	Methods
	SMT-based methods
	MILP-based methods
	Abstract Interpretation-based methods
	Other approaches

	State of the art

	Adversarial attacks
	Neural Networks
	White-box attacks
	Black-box attacks
	Poisoning attacks
	Grey-box attacks

	Decision Trees

	Building Safer Models
	Countermeasures Against Adversarial Examples
	Gradient Masking/Obfuscation
	Adversarial Training

	Confidence Learning
	Data preparation
	Ensemble learning
	Building easier to verify NNs

	Explainability
	Minimal explication - formal explainability
	Verified perturbation analysis - non-formal explainability
	Explainable Neural Networks

	Plan for phase 2
	Experiments
	Tools
	Verification
	Attacks and defenses
	Training easier to verify NNs

	Experiments
	The framework
	The datasets
	The model
	Training a model
	The attacks

	Impact of the adversarial example for the training
	Evaluating the model's accuracy
	Confidence Learning
	Verification
	Neural networks
	Weight sparsity and ReLU stability
	Decision trees
	Other tools

	Explainability
	SHAP and LIME
	Anchor

	Conclusion
	Appendices
	Appendix Reproduce the experiments
	Appendix Run the project
	Appendix Tool list
	Appendix Weight sparsity and ReLU stability

