
Internship with the Argonne National Laboratory : a
collaboration with DeepHyper

Joceran Gouneau

Prasanna Balaprakash, Romain Egelé (Supervisors)

Abstract—Bayesian optimization (BO) is a widely used ap-
proach for computationally expensive black-box optimization
such as hyperparameter optimization (HPO) [1] [2] [3] [4]
of deep learning methods. To this end, DeepHyper [5] [6] is
a scalable, open-source software package for automated ma-
chine/deep learning (ML/DL) ; it enables scientists to rapidly
develop ML/DL models using BO methods on leadership-class
systems such as Theta. In order to improve the performances of
our HPO framework, we propose a new method : Asynchronous
Distributed Bayesian Optimization, and apply it to the case
of plasma disruptions prediction in a tokamak fusion reactor.
We show a clear improvement of scalability on large High
Performance Calculus (HPC) systems with our new method and
better predictions on the fusion problem with hyperparameters
found by this algorithm. This work enables DeepHyper to take
advantage of the computation power of even bigger systems and
demonstrates its usefulness in a concrete use-case.

Index Terms—Automated Machine Learning, Machine Learn-
ing, Deep Learning, Hyperparameter Optimization, Black-box
Optimization, High Performance Calculus, Fusion, Disruption.

I. INTRODUCTION

Automated machine learning (AutoML) has the goal to ease
setting up machine learning methods for non experts. One of
the applications of this research field is HPO ; most of ML
methods require parameters to be fixed by humans, like certain
thresholds or coefficients, these are called hyperparameters and
are generally arbitrarily chosen : HPO aims at automatically
searching for the best set of hyperparameters for a given
model and problem. DeepHyper is an AutoML package that
provides among other tools a framework to perform HPO.
The way it works is the following : the user defines the
hyperparameter space he wants to search through as well as
the process parameterized by it : this process is called the
black-box function, it takes as input a configuration of the
previously defined hyperparameters and returns a single scalar
value which acts as a score of how good the hyperparameter
configuration was ; the user then only has to execute the
search that will repeatedly run the black-box function with
various configurations, aiming on the long run for the best
hyperparameters.

II. DETAILS OF WORK/RESEARCH

A. Documentation, Tests, and Tutorials

My work with the DeepHyper team began with helping
cleaning and reorganizing their documentation, this helped me
understanding the architecture of the project while already
being able to work on it. Some of the code also needed
to be refactored so a bit of work was done on the existing

Pytest pipeline to verify that it was working correctly in my
workspace and to refactor it along with the modifications done.
Once my understanding of the package was strong enough I
got in charge to update some of the tutorials and also made
one on how to use this tool along with Pytorch (instead of
Tensorflow like in most of their tutorials).

B. Development of the ADBO method

The next main goal was to improve the worker utilization of
our method at scale, that is the parallelization of the search on
HPC systems ; the main contribution of this work was the find-
ing of a new method better at large scale : the Asynchronous
Distributed Bayesian Optimization. The previous method (Fig.
1a) consisted of a single manager using a surrogate model to
understand the mapping between configurations and scores in
order to find the best one ; the role of the manager is to send
untested configurations to the workers and gather the scores
once the execution is finished, it then optimizes the surrogate
model with these new configuration/score pairs to find better
configurations to explore. While this works at low scale, this
centralization (a single manager) becomes a bottleneck at
large scale, hence the need to distribute even the surrogate
model and optimization process by having an optimizer on
each worker and only sharing the configurations/scores pairs
through asynchronous communication between the workers
(Fig. 1b). While I contributed a bit to the creation of this
method, my main work was on the conception and execution
of benchmarks to compare the performances of this new
algorithm to the old one, depending on a number of parameters
and on a number of machine configurations, with an increasing
number of nodes and workers per nodes on the Theta system.

C. Application to the Fusion problem

Once this work was done a collaboration started with
another scientific team developing a neural network to predict
plasma disruptions in a tokamak fusion reactor [7] ; the goal
of this collaboration was to improve their model using our soft-
ware to find better hyperparameters (within the hyperparameter
space defined in TABLE I). It was first necessary to understand
their model, how it works and how it is implemented, but
their code needed a clean-up, so my first task was to re-
implement their pipeline with Tensorflow ; I also made some
optimizations, resulting in an even faster pipeline (around 4
times faster). Our algorithm was then put to the test, we
managed to improve the AUC score of the model from 0.875 to
0.913 (TABLE II) and show the ability of this hyperparameter

1

(a) (b)

Fig. 1: Centralized (1a) and distributed (1b) search models. A circle represents a process with W for a worker and M for a
manager, an arrow represents a communication, O represents the optimizer, and f represents the computation of the black-box
function. twait is the time for which a worker waits before being processed by the optimizer. tresp is the time taken by the
optimizer to suggest a new configuration. teff is the time it takes to compute the black-box function.

Algorithm 1: Greedy Caruana algorithm for ensemble
construction

Inputs : C: models that can be used to build the ensemble,
M : maximum number of different models to put in
the ensemble, X, y: data and labels on which
evaluate the models

Output: E the best ensemble found
/* Initialization for ensemble

construction */
1 E ← {}
2 max auc← 0
/* Model selection */

3 while |E .unique()| ≤M do
4 θ∗ ←θ∈C AUC(E ∪ {θ}, X, y)
5 if AUC(E ∪ {θ∗}, X, y) ≤ max auc then
6 E ← E ∪ {θ∗}
7 max auc← AUC(E , X, y)
8 else
9 returnE

10 end
11 end
12 returnE

search to generate diverse efficient configurations well suited
for ensemble prediction. Ensemble prediction consists of using
the prediction of an ensemble E = {mθi ∈ [1, . . . , n]} of
multiple models mθi in order to make a better prediction
; it also allows to separate the uncertainty of a prediction
into its epistemic and aleatoric components [8], giving more
information on its origin : whether it comes from the ignorance
of the model or the quality of the data. So the next task was to
study the uncertainty quantification (UQ) of the models and
ensembles of models in order to see if ensemble prediction
indeed gave better insights ; different algorithms were used

for ensemble calibration : basic top-k models, greedy Caruana
(Algorithm 1), and a gradient-based algorithm I came up with
(Eq. 3). In order to have a better UQ the models needed to
be calibrated, so that the prediction probability they output
would represent more accurately their level of confidence in
their predictions ; the calibration process consists of finding
the best α and β to minimize the cross-entropy of the model
when its output y is passed through the following sigmoid :

σα,β(y) :=
1

1 + exp(−(α · y + β))
(1)

While this calibration is done model by model and fixed
before ensemble constitution for top-k and greedy Caruana, it
is an integral part of the gradient-based algorithm which goal
is to calibrate the whole ensemble directly :

mE(x;ω) :=
K∑
i=1

Γi · σαi,βi
(mθi(x))

Γi :=
exp(γi)∑K
j=1 exp(γj)

(2)

Where the αi and βi are used to calibrate the models, and
the γi are used to weight the importance of each model in
the output of the ensemble ; these parameters are computed
through gradient descent with respect to the cross-entropy loss
L of the corresponding ensemble :

α∗, β∗, γ∗, := argmin
α,β,γ

L (y,mE(x; Ω)) (3)

The final step was to show which method was the best one
and study the improvements possible with ensemble predic-
tion, unfortunately a better understanding of the input data

2

Name Type Range Distribution Default
batch size real [32, 256] log-uniform 128

dense regularization real [0, 1] uniform 0.001
dense size real [32, 256] log-uniform 128

dropout prob real [0, 0.5] uniform 0.1
length real [32, 256] log-uniform 128
loss categorical [balanced cross, balanced focal, balanced hinge, cross, focal, hinge] uniform hinge
lr real [10−7, 10−2] log-uniform 2.10−5

lr decay real [0.9, 1] uniform 0.97
momentum real [0.9, 1] uniform 0.9

num conv filters real [32, 256] log-uniform 128
num conv layers discrete [1, 4] uniform 3

num epochs discrete [1, 32] uniform 32
regularization real [0, 1] uniform 0.001

rnn layers discrete [1, 4] uniform 2
rnn size real [32, 256] log-uniform 200

TABLE I: Table of hyperparameters

was necessary to evaluate the performances of our methods
and the contract went to an end before we could conclude
with the help of an expert.

Baseline Best Model Top-k Caruana Gradient
Test AUC 0.875 0.913 0.913 0.917 0.915

Balanced CE 0.285 0.165 0.162 0.158 0.157
Inference Time 34.68 21.7 / / /

#Parameters 600,873 332,742 / / /
#Models 1 1 80 7 10

Training Time / / 2.20 274.7 64.16

TABLE II: Comparison of the baseline, best model, and
different ensembles regarding AUC as well as inference time
(on the whole test set in s.) and number of parameters of the
predictor.

III. CONCLUSION

During this internship, a new HPO method, which was
found to be better at large scale, was developed along with
the base code for implementing benchmarks and analysing
performance, enabling better insights of our results and a
more consistent improvement of DeepHyper. A successful
application of our HPO algorithms was done on the fusion
problem, showing a clear improvement in performances of the
model, but still unclear improvements on UQ. Further work
includes understanding these results on UQ in order to publish
a paper, as well as improve even more the performances and
ease of use of the software.

REFERENCES

[1] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for
hyper-parameter optimization,” in Proceedings of the 24th International
Conference on Neural Information Processing Systems, ser. NIPS’11.
Red Hook, NY, USA: Curran Associates Inc., 2011, p. 2546–2554.

[2] J. Bergstra, D. Yamins, and D. Cox, “Making a science of model
search: Hyperparameter optimization in hundreds of dimensions for vision
architectures,” in International conference on machine learning. PMLR,
2013, pp. 115–123.

[3] A. Klein, S. Falkner, S. Bartels, P. Hennig, and F. Hutter, “Fast Bayesian
optimization of machine learning hyperparameters on large datasets,” in
Artificial intelligence and statistics. PMLR, 2017, pp. 528–536.

[4] A. Alvi, B. Ru, J.-P. Calliess, S. Roberts, and M. A. Osborne,
“Asynchronous batch Bayesian optimisation with improved local
penalisation,” in Proceedings of the 36th International Conference on
Machine Learning, ser. Proceedings of Machine Learning Research,
K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97. PMLR, 09–15 Jun
2019, pp. 253–262. [Online]. Available: https://proceedings.mlr.press/
v97/alvi19a.html

[5] P. Balaprakash, R. Egele, M. Salim, V. Vishwanath, and S. M.
Wild, “DeepHyper: Scalable Asynchronous Neural Architecture and
Hyperparameter Search for Deep Neural Networks,” 2018–2022.
[Online]. Available: https://github.com/deephyper/deephyper

[6] P. Balaprakash, M. Salim, T. D. Uram, V. Vishwanath, and S. M.
Wild, “DeepHyper: Asynchronous hyperparameter search for deep neural
networks,” in 2018 IEEE 25th International Conference on High Perfor-
mance Computing (HiPC), 2018, pp. 42–51.

[7] S. A. . T. W. Kates-Harbeck, J., “Predicting disruptive instabilities in
controlled fusion plasmas through deep learning.” Nature, vol. 568,
2019. [Online]. Available: https://doi.org/10.1038/s41586-019-1116-4

[8] R. Egele, R. Maulik, K. Raghavan, P. Balaprakash, and B. Lusch,
“AutoDEUQ: Automated deep ensemble with uncertainty quantification,”
CoRR, vol. abs/2110.13511, 2021. [Online]. Available: https://arxiv.org/
abs/2110.13511

3

https://proceedings.mlr.press/v97/alvi19a.html
https://proceedings.mlr.press/v97/alvi19a.html
https://github.com/deephyper/deephyper
https://doi.org/10.1038/s41586-019-1116-4
https://arxiv.org/abs/2110.13511
https://arxiv.org/abs/2110.13511

	Introduction
	Details of Work/Research
	Documentation, Tests, and Tutorials
	Development of the ADBO method
	Application to the Fusion problem

	Conclusion
	References

